Exercices type portant sur les compétences de base Savoir faire indispensable

Généralités sur les fonctions en 2de

Ces exercices sont extraits du site https://avosmaths.fr où ils sont interactifs, corrigés et réinitialisables à volonté afin de pouvoir les refaire avec des données et calculs différents.

Exercice 1:

1) Donner l'intervalle qui correspond à l'inégalité :

$$x \ge -19$$

2) Donner l'inégalité qui correspond à l'intervalle, puis représenter cette zone sur l'axe gradué ci-dessous.

Exercice 2:

1) Donner l'intervalle qui correspond à l'intersection ci-dessous :

2) Donner l'intervalle qui correspond à la réunion ci-dessous :

Exercice 3 : Déterminer l'ensemble de définition des fonctions suivantes

On considère la fonction définie par

$$f: x \longmapsto \frac{1}{(x+4)(x+3)}$$

On considère la fonction définie par

$$f: x \longmapsto \sqrt{2x+5}$$

Exercice 4:

On donne un tableau de valeurs de la fonction f.

x	-6	-5	-4	-2.53	0	0.5	0.53	1	6
f(x)	-3.8	-1	1	2.49	1	0.1	0.04	-1	-23

Quelle est l'image de -6 par la fonction f?

Déterminer le (ou les) antécédent(s) de 1.

Exercice 5:

Soit f une fonction telle que:

$$f(-6) = -1$$

$$f(-4) = -2$$

$$f(-2) = -1$$

$$f(-5) = -3$$

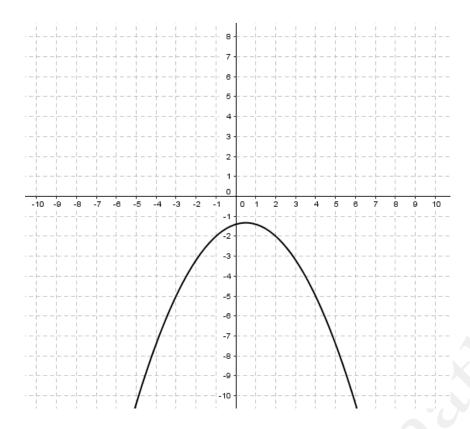
$$f(-3) = -5$$

$$f(-6) = -1$$
 $f(-4) = -2$ $f(-2) = -1$
 $f(-5) = -3$ $f(-3) = -5$ $f(-1) = -4$

Quelle est l'image de -4 par la fonction f?

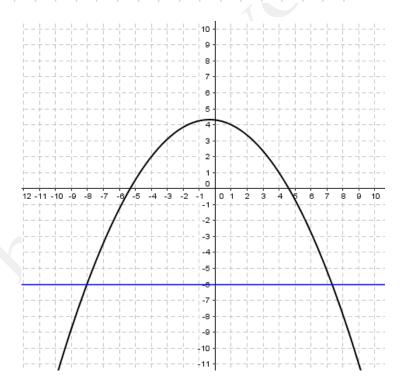
Déterminer le (ou les) antécédent(s) de -5.

Exercice 6:

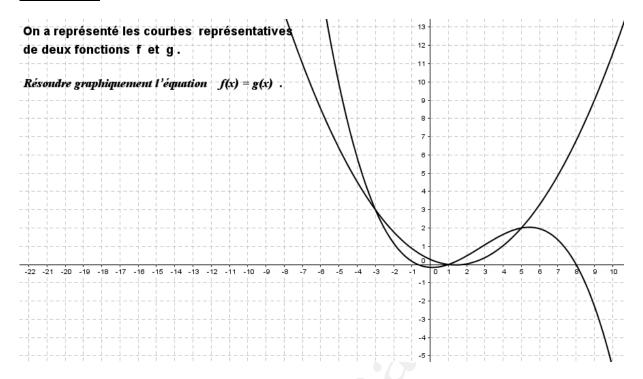

Soit la fonction $f: x \longrightarrow -3x^3 - 4x^2 + x + 2$

Quelle est l'image de -5 ?

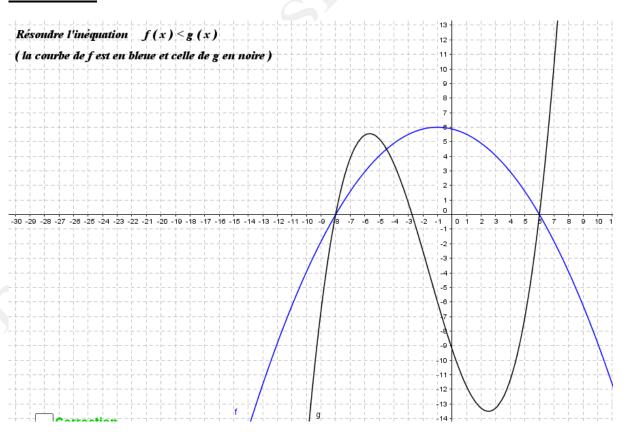
Exercice 7:


On a représenté la courbe-représentative d'une fonction f dont on limitera l'étude à l'intervalle [-10 ; 10].

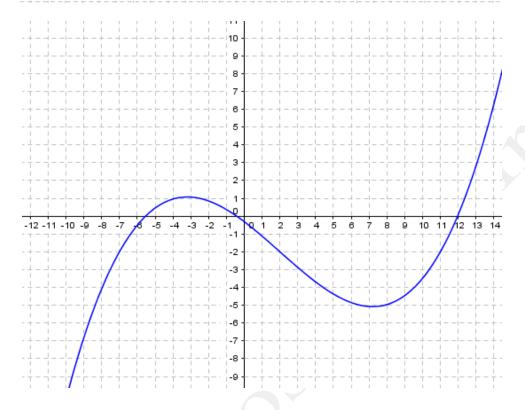
Résoudre graphiquement l'équation f(x) = -4sur l'intervalle [-10 ; 10].



Exercice 8 : On a représenté la courbe représentative d'une fonction f (tracée en noire)


Résoudre graphiquement l'équation $f(x) \ge -6$.

Exercice 9:



Exercice 10:

Exercice 11:

Dresser le tableau de variation de la fonction dont la courbe a été tracée ci-dessous sur l'intervalle [-7 ; 12].

Exercice 12:

Soit la fonction définie sur]- ∞ ; + ∞ [par : f(x) = -3x - 9

- 1. Etudier le signe de f(b)-f(a) pour a et b appartenant à $[-\infty; +\infty[$ avec a < b; en déduire le sens de variation de f sur cet intervalle.
- 2. Dresser le tableau de variation de f.

Exercice 13:

Soit la fonction définie sur $[-\infty; +\infty[$ par : $f(x) = 2x^2 - 20x + 6$

1. Soit a et b deux réels. Montrer que:

$$f(b) - f(a) = 2(b - a)(b + a - 10)$$

- 2. a. Etudier le signe de f(b) f(a) pour a et b appartenant à $\begin{bmatrix} 5 \\ \end{bmatrix} + \infty \begin{bmatrix} \end{bmatrix}$, avec $a \le b$; en déduire le sens de variation de f sur cet intervalle.
- b. Même consigne sur] -∞; 5].
- 3. Dresser le tableau de variation de f.

Exercice 14:

Soit la fonction définie sur] - ∞ ; -10 [\cup] -10 ; + ∞ [par : $f(x) = 2 - \frac{6}{x + 10}$

1. Soit a et b deux réels. Montrer que :

$$f(b) - f(a) = \frac{6(b-a)}{(a+10)(b+10)}$$

- 2. a. Etudier le signe de f(b) f(a) pour a et b appartenant à $[-10; +\infty[$, avec $a \le b;$ en déduire le sens de variation de f sur cet intervalle.
- b. Même consigne sur | -∞; -10 [.
- 3. Dresser le tableau de variation de f.